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Abstract We revisit here the problem of generalized cosmology using renormalization
group approach. A complete analysis of these cosmologies, where specific models appear
as asymptotic fixed-points, is given here along with their linearized stability analysis.

1 Introduction

It is widely accepted that Einstein’s general theory of relativity is an effective four-
dimensional theory at lower energies and that it needs modifications at high energies. In the
cosmological context, this break down of the theory results in a modification of the Fried-
mann equation with important consequences in the dynamical evolution at early times (see
for example, [1, 2]). There has been several proposals for cosmological scenarios mostly
inspired by brane-world models or by the presence of dark energy. All of them lead to modi-
fications to the total energy density dependence of the Friedmann equation. Also, there have
been studies using dynamical system approach, bringing together several of such corrections
to the Friedmann equation, in order to study the conditions which lead to attractor scaling
solutions [3].

In the dark energy scenarios, the energy density of the scalar field, responsible for the
dark energy, is important only at late times and can account for the acceleration of the
universe [4–27]. Therefore, scaling solutions (i.e. solutions for which the energy density
of the scalar field and the perfect fluid scale in the same way), which appear as late time
attractors of the system of the evolution equations can play an important role in modeling

J. Ibáñez
Dpto. de Física Teórica, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
e-mail: j.ibanez@ehu.es

S. Jhingan (�)
Centre for Theoretical Physics, Jamia Millia Islamia, Jamia Nagar, Delhi 110092, India
e-mail: sanjay.jhingan@gmail.com

S. Jhingan
Department of Physics, Jamia Millia Islamia, Jamia Nagar, Delhi 110092, India



2314 Int J Theor Phys (2007) 46: 2313–2325

dark energy scenarios [28]. The existence and behavior of these models in the scaling regime
depends on the proposed modifications to the Friedmann equation, as well as on the form of
the scalar field potential.

In this paper we analyze asymptotic evolution of modified cosmologies with a scalar field
and a barotropic perfect fluid. The modification of the standard cosmology is parameterized
by a function of the total energy density, in the line of Copeland et al. [3]. The analysis of the
asymptotic behavior of the equations is performed using the techniques of the renormaliza-
tion group (RG), which has emerged as a powerful method for doing global and asymptotic
analysis of ordinary and partial differential equations (Illinois group [29–31], Bricmont et
al. [32], Caginalp [33–35], Moise and Ziane [36], for a reformulation of the RG approach in
terms of the classical theory of envelops see Kunihiro, [37, 38], the theory of perturbations
of an isotropic universe with dynamically evolving Newton constant and Cosmological con-
stant [39–42], and [43–45] for application of RG techniques to General Relativity). We shall
show in this paper that the RG technique provides a very effective method for obtaining and
analyzing such solutions.

The plan of the paper is the following: In Sect. 2 we describe the basic equations govern-
ing generalized cosmology. This is followed by a section where we give a very brief intro-
duction to the RG method and apply this technique to the generalized cosmological models.
Next section deals with a study of the exact scaling solutions, which are the fixed-points of
the RG transformations. The stability of these exact solutions under linearized perturbations
is analyzed in Sect. 5. We conclude with a brief summary.

2 Generalized Cosmology

Extending their earlier analysis of FLRW models using dynamical system approach [9],
Copeland et al. showed that the modified cosmological models, such as Randall–Sundrum,
Shatnov–Shani, etc. can be recovered as scaling solutions by modifying the Friedmann equa-
tion [3],

H 2 = 8π

3m2
4

ρG2(ρ). (2.1)

For G(ρ) = constant, we recover the standard FLRW cosmology. Here ρ is total energy
density, and m4 is the four-dimensional Planck mass.

The model of universe considered here contains a barotropic fluid pγ = (γ − 1)ργ , with
adiabatic index 0 ≤ γ ≤ 2, and a scalar field with energy density

ρφ = 1

2
φ̇2 + V (φ), (2.2)

where V (φ) is the scalar field potential and ργ + ρφ = ρ. From the Einstein equations we
get the following system of equations

Ḣ = −4πG

m2
4

(
G + 2ρ

dG

dρ

)[(
1 − γ

2

)
φ̇2 + γ (ρ − V )

]
,

ρ̇ = −3H

[(
1 − γ

2

)
φ̇2 + γ (ρ − V )

]
,

ρ̇γ = −3γHργ ,

φ̈ = −3Hφ̇ − dV

dφ
.

(2.3)
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The evolution of scalar potential V and the generalization function G depends on their
respective functional dependence on φ, and ρ,

V̇ =
(

dV

dφ

)
φ̇, Ġ =

(
dG

dρ

)
ρ̇,

and which are for the moment left arbitrary. The generalization function G modifies the
Hubble parameter, changing the cosmological expansion/contraction rate (H = ȧ/a), and
that correspondingly alters the evolution of all the physical variables in the system.

Before applying the RG procedure to the above set of evolution equations some com-
ments on scaling solutions are in order. It is well known that the scalar fields with expo-
nential potential admit scaling solutions. The form of the potential changes in the case of
generalized cosmologies; Copeland et al. in Ref. [3] gave a necessary and sufficient con-
dition relating the scalar field potential and the generalization function G in order to get
scaling solutions. Instead of repeating their procedure to get the required condition, we give
below an alternative derivation to obtain an equivalent condition.

Let’s introduce a new variable

x = a−3γ .

Essentially we want to use the scale factor a(t), which is related to Hubble parameter, instead
of the usual coordinate time t , as our evolution parameter. In the equation set (2.3), the
equation giving evolution of the energy density of the fluid can be integrated trivially in the
new parametrization as

ργ = ρoγ x (2.4)

where ρoγ is an integration constant. The argument leading to the desired relation between
V and G is now straight forward. Restricting ourselves to scaling solutions, i.e. both the
scalar field density and the fluid density scale in the same way, we have

ρφ ∼ ργ ⇒ ρφ = ρoφx ⇒ ρ = ρox (2.5)

where ρo = ρoφ + ρoγ . Using the evolution equation of the total density along with the
scaling condition above, the form of potential can now be determined as

V = (2 − γ )

2
ρoφx. (2.6)

Also, using definition of ρφ , the kinetic energy term for the scalar field can be recovered as,

φ̇2 = γρoφx. (2.7)

On the other hand, we have

φ̇ = −3γ xH
dφ

dx
. (2.8)

Taking the square of the above equation, substituting (2.1) and (2.7), and bearing in mind
that now function G depends on x, we get

3

√
8π

3m4
2

√
γρo

ρoφ

φ = ±
∫

dx

xG(x)
. (2.9)
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Once the function G is fixed, the above equation gives φ as a function of x. Now taking the
inverse of this function and substituting it in (2.6) the form of potential corresponding to the
specific choice of G is obtained. The condition given above is equivalent to the one obtained
by Copeland et al. [3]. Therefore, condition for the scaling solution, relating generalization
parameter G with potential V , can be easily recovered starting with the scaling ansatz, that
is, both the scalar field component and the fluid component scale in the same way.

3 Renormalization Group Approach

The renormalization group (RG) approach developed by Wilson (see for example, Wilson
and Kogut [46]) has enjoyed tremendous success, and is seen as a broad philosophy rather
than just a mathematical technique. In the past decade this philosophy is also applied with
considerable success to understanding some very basic aspects of non-linear differential
equations. In particular, equivalence of RG and intermediate asymptotics was shown by
Goldenfeld et al. (see for example, [29–31]). They showed that the so called anomalous
dimension in RG theory are actually the non-trivial exponents appearing in the intermediate
asymptotics.

The scaling solutions which we are concerned with are exact solutions, and which exhibit
self-similarity at an asymptotic fixed-point. Therefore, RG seems to be a natural choice for
our purpose. The form in which RG is used here was developed by Bricmont and Kupiainen
[32]. The basic idea is as follows: We do a finite time integration followed by a rescaling of
variables in the problem. This scaling transformation together with evolution equations gives
us the RG equations. And, the fixed-points of these equations are actually the scale-invariant
solutions to differential (evolution) equations which we are interested in.

We will apply now the RG method to the system of equations governing the generalized
cosmology, given in the previous section. Our interest here is in the early or late time regime,
where solution asymptotes to the form

lim
t→∞u(t) = tχu∗(1). (3.1)

Here u(t), refers to any variable of the former system of equations, namely H,ρ,φ,V,G.
The value “one” in the argument of u∗(1), signifies the initial value of the u, and χ is the
scaling exponent to be determined later. It is convenient to choose t = 1 as initial time. The
RG method gives us a systematic procedure to determine the exponent χ , and u∗(1), as
we have illustrated below for the case of generalized cosmological models. Apart from the
large time decay, this RG procedure is also applicable to the finite time decay or blow up of
solutions, where self-similarity is exhibited at the asymptotic fixed-point.

Let us consider following scale transformations

t → Lt, H → LeH(Lt) ≡ HL, ρ → Laρ(Lt) ≡ ρL,

φ̇ → Lbφ̇(Lt) ≡ φ̇L, V → LcV ≡ VL, G → LdG ≡ GL.
(3.2)

We use here a number L > 1, as a parameter for scale transformations, and the quantities
subscripted with index “L” are scaled quantities. The RG transformation RL is defined as a
map from one initial data set to another [43, 44],

RLu(x,1) = uL(x,1).
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These transformations have the semi-group property RLn = RLn−1 ◦ RL. Since the scaled
quantities satisfy the original system of equations, this fixes the following exponents

e = 1, a = 2b = c, d = 1 − a

2
. (3.3)

Moreover, letting t = 1 and L = t , now we can express solution at arbitrary time in terms of
initial values

H(t) = t−1HL(1), ρ(t) = t−aρL(1), φ̇(t) = t−
a
2 φ̇L(1),

V (t) = t−aVL, G(t) = t
a
2 −1GL

(3.4)

where quantities sub-scripted with L are constants. The exponent a is the anomalous dimen-
sion: the field equations alone do not fix it and it should be determined by initial or boundary
conditions. For instance, when one chooses a particular model by fixing the function G, pa-
rameter a gets determined.

Note from (3.4) that the evolution of φ (as well as φ̇) depends on the value of parameter
a. This behavior, as we will see later, has consequences on the nature of the potential in
the scaling regime. In particular it is the parameter a, which distinguishes FRW standard
cosmology from other “generalized” models.

Comments are now in order about nature of the potential V . Though the functional form
of the potential is left free, clearly in the scaling regime it gets fixed, (3.4). Moreover, the
functional form of G also is not arbitrary. As argued in the previous paragraph, depending
on the value of parameter a, the scaling regime can be divided in two categories; a = 2,
which gives the usual FLRW models and a 
= 2, the generalized cosmology.

a = 2: From (3.4), we get

V (φ) = V0 exp(−2φ/φ̇L), G(ρ) = G0. (3.5)

Where V0 = VL(1) and G0 = GL(1) are constants. Therefore, in the scaling regime we
have a exponential potential and the generalization function G is a constant, i.e., FLRW
cosmology.

a 
= 2: In this case G and V have a power law dependence on ρ and φ, respectively, in the
scaling regime

V (φ) = V0φL

2a
a−2 , G(ρ) = G0ρ

2−a
2a

L , (3.6)

where G0 and V0 have simple dependence on the L sub-scripted quantities.
We draw a comparison now between the scaling solutions in cosmology, discussed in the

previous section, and the scale invariant solutions which arise as asymptotic fixed-points of
the RG analysis. First note that we are using as a variable the total energy density ρ, instead
of the density of the perfect fluid ργ . However, from (2.3) we have the following scaling
relation for the perfect fluid energy density ργ ∼ t−a . It is easy now to see that the energy
density of the perfect fluid and the energy density of the scalar field scale in the same way

ρφ

ργ

= φ̇2
L + 2VL

2ργ L

= constant (3.7)

which is the usual definition of scaling solutions in scalar field cosmologies. Therefore, in
RG method we recover all the scaling solutions of the system as a subset of scale invariant
solutions, provided that both components of energy density are non-vanishing.
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The large L in our notation means late time. Therefore, applying the RG transforma-
tion repeatedly we can recover the long time behavior of the solution. Defining a auxiliary
parameter τ through L = exp(τ ), the RG equations are

dHL

dτ
= HL + dHL

dt

∣∣∣∣
t=1

= HL −
{

4πGL

m2
4

(
GL + 2ρL

dGL

dρL

)[(
1 − γ

2

)
φ̇2

L + γ (ρL − VL)

]}
t=1

,

dρL

dτ
= aρL + dρL

dt

∣∣∣∣
t=1

= aρL −
{

3HL

[(
1 − γ

2

)
φ̇2

L + γ (ρL − VL)

]}
t=1

,

(3.8)
dφ̇L

dτ
= a

2
φ̇L + dφ̇L

dt

∣∣∣∣
t=1

= a

2
φ̇L −

{
3HLφ̇L − dVL

dφL

}
t=1

,

dVL

dτ
= aVL + dVL

dt

∣∣∣∣
t=1

= aVL +
{(

dVL

dφL

)
φ̇L

}
t=1

,

dGL

dτ
=

(
1 − a

2

)
GL + dGL

dt

∣∣∣∣
t=1

=
(

1 − a

2

)
GL +

{(
dGL

dρL

)
ρ̇L

}
t=1

.

Which is a set of algebraic equations since the quantities on the right hand side are all
evaluated at t = 1. Note that the system of equations above has no dependence on L; this is
expected since the system (2.3) is scale invariant.

4 Scale Invariant Solutions

The scale invariant solutions appear as fixed-points to the RG equations. The fixed-points
are those points which are mapped onto themselves by the RG transformations for any
L > 1

RLu∗ = u∗,

and which is equivalent to

du∗

dτ
= 0.

Therefore, the equations determining the fixed-points of our system are

dH ∗
L

dτ
= 0,

dρ∗
L

dτ
= 0,

dφ̇∗
L

dτ
= 0,

dV ∗
L

dτ
= 0. (4.1)

As discussed earlier in this paper, if classified in terms of the potential function of the scalar
field there are two classes of solutions corresponding to the exponential and the power-
law potentials; equivalently the system can also be classified in terms of the generalization
function G. Moreover, these two different classes also differ in their value of anomalous
dimension “a” and which, therefore, can also serve as an alternative way of classifying
these fixed-points.
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4.1 Exponential potential (a = 2)

To facilitate a comparison with earlier works in FLRW scalar field cosmology we shall use
ργ , as a variable in this subsection instead of the total energy density ρ. Moreover, we work
with the notation used in [9], defining κ = 8πG. The set of RG equations simplifies to

dHL

dτ
= HL −

{
κ2

2
(γργL + φ̇2

L)

}
t=1

,

dργL

dτ
= 2ργL − 3γ {ργLHL}t=1, (4.2)

dφ̇L

dτ
= −

{
3φ̇LHL + dVL

dφL

}
t=1

Therefore, the fixed-points for this system are

dH ∗
L

dτ
= 0,

dρ∗
γL

dτ
= 0,

dφ̇∗
L

dτ
= 0. (4.3)

The fixed-points should also satisfy the Friedmann equation

H ∗2 = κ2

3

(
ρ∗

γ + 1

2
φ̇∗2 + V ∗

)
. (4.4)

From the second equation in equations set (4.3), we see that there are two different sets
of fixed-points: those with ρ∗

γ = 0 and those with ρ∗
γ 
= 0. Let’s start with the fixed-points

characterized by ρ∗
γ = 0. This case can be further subdivided into two sub-cases. In the first

case, corresponding to V ∗ = 0, we obtain

V ∗ = 0,

(
dV

dφ

)∗
= 0, H ∗ = 1

3
, ρ∗

γ = 0, φ̇∗ = ± 1

κ

√
2

3
. (4.5)

This solution corresponds to a massless scalar field cosmology.
In the second case, V ∗ 
= 0, the nature of potential in the neighborhood of the fixed-point

is given by (3.5). Comparing the potential (3.5) with the exponential potential used in [9],
V = V0 exp(−κλφ), the fixed-point is given by

φ̇∗ = 2

κλ
, ρ∗

γ = 0, H ∗ = 2

9λ2
, V ∗ = 2

κ2λ2

(
6

λ2
− 1

)
. (4.6)

It is a exponential potential scalar field cosmology.
For the fixed-points with non-zero perfect fluid ρ∗

γ 
= 0 the value of Hubble parameter is
determined H ∗ = 2/3γ . And we have following sub-cases due the nature of the potential.
One case with V ∗ = 0, and the solution for fixed-point is

H ∗ = 2

3γ
, ρ∗

γ = 4

3κ2γ 2
, φ̇∗ = 0, V ∗ = 0. (4.7)

Which is a perfect fluid only cosmology. The second case V ∗ 
= 0, the fixed-point is

H ∗ = 2

3γ
, ρ∗

γ = 4

κ2γ 2

γ − 3λ2

9λ2
, φ̇∗ = 2

3κλ
, V ∗ = 2(2 − γ )

9κ2γ λ2
, (4.8)

for λ2 > 3γ .
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The fixed-points obtained are the same as in given in [9], where the scalar field potential
is assumed to be of exponential form from the very beginning, and the system of equations
was written in terms of normalized variables that make the phase space of the autonomous
system bounded. It is interesting to note that imposing scale invariance we obtain the same
results without using normalized variables. On the other side, it is reasonable to think that,
what are called scaling solutions should be scale invariance solutions, since in that case
the scalar field energy density and the energy density of the matter scale as a power of the
scale factor. Assuming this we have proved that the only potential that gives scale invariance
solutions is of exponential type in FLRW cosmology.

4.2 Power-law potentials (a 
= 2)

In deriving the expression for potential in the scaling regime we have used the scaling be-
havior of φ, i.e.,

dφL

dτ
=

(
a

2
− 1

)
φL + φ̇L

implying 2φ̇∗ = (2 − a)φ∗ at the fixed-point.
Let’s note also that, as in the standard cosmology, there are two classes of fixed-points

depending on whether ργ vanishes or not. The quantity ργ , however, is not a variable in our
system of equations (3.8) (we have used ρ instead), nevertheless ργ satisfies the following
equation

dργ

dτ
= ργ (a − 3γH),

which means that if fluid density is non-vanishing at the fixed point ρ∗
γ 
= 0, the Hubble

parameter takes the critical value H ∗ = a/3γ .
To analyze the fixed-points when a 
= 2, we first consider V = 0. In this case the RG

equations simplify considerably

H ∗2 = 8πG2
0

3m2
4

ρ∗ 2
a ,

2aρ∗ = 3H ∗[(2 − γ )φ̇∗2 + 2γρ∗], (4.9)

aφ̇∗ = 6H ∗φ̇∗

giving the following set of fixed-points

φ̇∗ = 0, ρ∗ =
(

a2m2
4

24πγ 2G2
0

) a
2

, H ∗ = a

3γ
, (4.10)

φ̇∗ = ±√
2ρ∗, ρ∗ =

(
a2m2

4

96πG2
0

) a
2

, H ∗ = a

6
. (4.11)

The fixed-point (4.10) corresponds to vanishing of the scalar field and (4.11) to the vanishing
of the perfect fluid. Therefore, only one component survives in the scaling regime. Note that
(4.11) is not a limiting case of (4.10) for γ = 2.
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The fixed-points in the more general case with non-zero potential are governed by the
following set of algebraic equations

H ∗2 = 8πG2
0

3m2
4

ρ∗ 2
a ,

8aρ∗ = 3H ∗[(2 − γ )(2 − a)2φ∗2 + 8γ (ρ∗ − V0φ
∗ 2a

a−2 )], (4.12)

H ∗φ∗ = a

6
φ∗ − 4aV0

3(a − 2)2
φ∗ a+2

a−2 .

These cannot be solved in general however various special cases corresponding to different
values of parameter a(
= 2) can be analyzed.

First we consider the simplest scenario where potential V vanishes in the asymptotic
regime due to vanishing of the scalar field itself (φ∗ = 0). This is unlike the previous case
where potential was identically zero (due to, say, V0 = 0) to begin with. We recover follow-
ing fixed-point for vanishing of the scalar field φ∗ = 0,

H ∗ = a

3γ
, ρ∗ =

(
a2m4

2

24πγ 2G2
0

) a
2

, V ∗ = 0. (4.13)

This is similar to the previous case, except the fact that the range of anomalous dimension a

is restricted to |a| > 2, and that the cosmology is driven towards vanishing potential which
is non-zero to begin with.

The fixed-points corresponding to a non-vanishing potential in the scaling regime can
be divided in two families. The one corresponding to vanishing fluid component in scaling
regime is given by

H ∗ = ±
√

8πG2
0

3m2
4

ρ∗ 1
a , ρ∗ =

[
3π(2 − a)4G2

0

2a2m2
4

] a
2(a−1)

φ∗ 2a
a−1 , V ∗ = V0φ

∗ 2a
a−2 .

(4.14)
The plus and the minus signs correspond to expanding and contracting models, respectively,
and the φ∗ in the equation above is given by the solution to following algebraic equation
(a 
= 1,2);

φ∗ 4
a−2 − 1

V0

(
1 − a

2

) 2a
a−1

[
±

√
24πG2

0

a2m2
4

] a
(a−1)

φ∗ 2
a−1 + (2 − a)2

8V0
= 0. (4.15)

The case a = 1 needs to be treated separately and the fixed-point is of the form

H ∗ = ±
√

8πG2
0

3m2
4

ρ∗, ρ∗ = ±
√

3πG2
0

2m2
4

(
m2

4

12πG2
0

+ V0

)
,

φ∗2 = ±
√

2m2
4

3πG2
0

, V ∗ = V0φ
∗ 2a

a−2 .

(4.16)
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The other fix-point corresponding to non-vanishing of both the scalar field and the perfect
fluid is of the form

H ∗ = a

3γ
, φ∗ =

[
(2 − γ )(2 − a)

4γV0

] a−2
4

,

ρ∗ =
(

a2m4
2

24πγ 2G2
0

) a
2

, V ∗ = V0φ
∗ 2a

a−2 .

(4.17)

For a = 2 system reduces to usual FLRW models with exponential potentials which were
analyzed in the previous subsection.

4.3 Stability

The scaling solutions studied in the previous section arise as fixed-points of the RG equa-
tions. The stability in time evolution around a self-similar solution is stability of RG flow
near the fixed-point. We do a linear perturbation analysis here, considering perturbations in
the initial data space staying close to the fixed-points and searching for relevant modes, i.e.,
modes which make the flow diverge from the fixed-points.

Let us define following perturbation quantities

H = H ∗ + δH, ρ = ρ∗ + δρ, φ̇ = φ̇∗ + δφ̇,

φ = φ∗ + δφ, V = V ∗ + δV, G = G∗ + δG.

Where all perturbed quantities are small (� 1). The Friedmann equation can be linearized
as

H ∗δH = 4π

3m2
4

G∗[G∗δρ + 2ρ∗δG] (4.18)

and can be used to relate variation in H with other variables. However, this reduction in
variables can make the equation set much more complicated and for the moment we will
work with the full set of variables.

The linearized RG equations take the following form

dδρ

dτ
= (a − 3γH ∗)δρ + 3(γ − 2)H ∗φ̇∗δφ̇ + 3γH ∗δV

− 3

2
[(2 − γ )(φ̇∗)2 + 2γ (ρ∗ − V ∗)]δH,

dδφ̇

dτ
=

(
a

2
− 3H ∗

)
δφ̇ − 3φ̇∗δH + 2a

(a − 2)

V ∗

(φ̇∗)2
δφ + 2a

(2 − a)φ̇∗ δV,

dδφ

dτ
=

(
a

2
− 1

)
δφ + δφ̇,

dδV

dτ
= 2a

(a − 2)

V ∗

φ∗ δφ̇ − 2a

(a − 2)

V ∗φ̇∗

(φ∗)2
δφ + a

(
1 + 2

(a − 2)

φ̇∗

φ∗

)
δV,

dδG

dτ
= (a − 2)

2a

{
−

[
(a − 3γH ∗) + 3

2

H ∗

ρ∗ [(γ − 2)(φ̇∗)2 + 2γV ∗]
]
δG
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+ 3

2

G∗H ∗

(ρ∗)2
[(γ − 2)(φ̇∗)2 + 2γV ∗]δρ

+3

[
γG∗ − 1

2

G∗

ρ∗ [(γ − 2)(φ̇∗)2 + 2γV ∗]
]
δH + 3(2 − γ )

H ∗G∗φ̇∗

ρ∗ δφ̇

}
.

We now find the normal modes with following ansatz

δf = f̄ exp(ωτ) (4.19)

where f is a representative variable for H,ρ, φ̇, φ,V and G, and over bar signifies quantity
to be constant. With this ansatz and also simplifying system using (4.18) we can now look
for any relevant modes.

Of all the fixed-points listed in the previous section the one given by (4.17) is of particular
interest since this corresponds to late time regime where both scalar field as well as perfect
fluid component are non-vanishing. Taking these particular fixed-point values the stability
of the system depends of the following matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω + 12πγ 2

a m2
4

G∗2ρ∗ a(γ−2)(a−2)

2γ
φ∗ −a 0 24πγ 2

am2
4

G∗ρ∗2

6πγ (2−a)

am2
4

G∗2φ∗ ω + a(2−γ )

2γ

a(a−2)(γ−2)

4γ
2a

(a−2)φ∗
12πγ (2−a)

am2
4

G∗ρ∗φ∗

0 −1 ω + 1 − a
2 0 0

0 a(a−2)(γ−2)

4γ
φ∗ a(a−2)2(γ−2)

8γ
φ∗ ω 0

6πγ 2(2−a)

a2m2
4

G∗3 (2−γ )(a−2)2

4γ

G∗φ∗
ρ∗ 0 (a−2)

2
G∗
ρ∗ ω − 12πγ 2(a−2)

a2m2
4

G∗2ρ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The values of ω are determined by vanishing of the determinant of the above matrix.
The two eigenvalues are zero and the remaining three are determined by solution of a cubic
equation

ω3 +
[(

1 − a + a

γ

)
+ 24πγ 2

a2m2
4

G∗2
ρ∗

]
ω2 +

[
a(2 − γ )

γ
+ 6π(γ − 2)(a − 2)2

am2
4

G∗2
φ∗2

+ 24πγ (γ + a − γ a)

a2m2
4

ρ∗
]
ω + 6π(γ − 2)

am2
4

[(a − 2)2φ∗2 + 4γρ∗]G∗2 = 0. (4.20)

Solutions of this equation and therefore criterion for stability of the fixed-points depends on
the value of the anomalous dimension a and other constants in the problem.

5 Summary

We have analyzed in this paper long time behavior of the cosmological equations By using
the Renormalization Group method, paying special attention to the scaling solutions in two
different cases. The first case of standard FRLW cosmology has been widely studied and it
serves us to illustrate the method we use. Although the system in this simple case can be
analyzed by means of dynamical system technique, this analysis depends upon the choice
of normalized variables which are not easy to find. The RG method avoids this problem: the
scale invariance solutions found describe all the scaling solutions.
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We also applied RG method to the generalized cosmologies, which imply modifications
of the Friedmann equation. The RG equations give the scaling solutions of the system and
we have shown that in the scaling regime the potential of the scalar field and the function
which describes the modifications to the Friedmann equation have a power law dependence
on their respective variables.

To see the dependence of the stability on this parameter we can take a simple example:
let’s consider a perturbation such that δφ̇ = 0: from the linearized perturbation equations
we get δφ = φ̄ exp((a/2 − 1)τ ). When a > 2, this mode is not stable but when a < 2,
the mode is stable. The RG method is a simple but powerful tool to investigate scaling
solutions for extended cosmologies. We have proved that to get scaling solutions, during
the dynamical evolution, the scalar field potential should be either power law or exponential
and the function G, that generalizes Friedmann equation, should be a power law of the
total density. Only the fixed point given by (4.17) represents a scaling solution, whereas the
rest of fixed points give cosmologies with either vanishing fluid or vanishing scalar field.
The stability of the scaling solution fixed point is given by (4.20), and it depends on the
particular model under study through the constants appearing in that equation. However,
the most relevant of these constants is the anomalous dimension “a”. Finally, it would be
interesting to study the evolution of a larger variety of field models as K-essence, phantom,
quintessence, etc. (see [47] for a review) with this technique.
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